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Calcium imaging records large-scale neuronal activity with cellular
resolution in vivo. Automated, fast, and reliable active neuron seg-
mentation is a critical step in the analysis workflow of utilizing neu-
ronal signals in real-time behavioral studies for discovery of neuronal
coding properties. Here, to exploit the full spatiotemporal in-
formation in two-photon calcium imaging movies, we propose a
3D convolutional neural network to identify and segment active
neurons. By utilizing a variety of two-photon microscopy datasets,
we show that our method outperforms state-of-the-art techniques
and is on a par with manual segmentation. Furthermore, we dem-
onstrate that the network trained on data recorded at a specific
cortical layer can be used to accurately segment active neurons from
another layer with different neuron density. Finally, our work docu-
ments significant tabulation flaws in one of the most cited and active
online scientific challenges in neuron segmentation. As our compu-
tationally fast method is an invaluable tool for a large spectrum of
real-time optogenetic experiments, we have made our open-source
software and carefully annotated dataset freely available online.

deep learning | calcium imaging | neuron segmentation | two-photon
microscopy | open source

Advances in two-photon microscopy and genetically encoded
calcium indicators have enabled high-speed and large-scale

in vivo recording of neuronal populations at 5- to 60-Hz video
rate data (1–5). Fast, automatic processing of the resulting large
imaging datasets is a critical yet challenging step for discovery of
neuronal coding properties in behavioral studies. Often the inves-
tigators are interested in identifying a subset of active neurons from
the large imaged population, further complicating the neuronal
segmentation task. The subset of modulating, and thus active,
neurons in many behavioral experiments carries the meaningful
information for understanding the brain’s coding characteristics.
Automatic identification of active neurons from the imaging
movies in high speed enables scientists to directly provide dynamic
complex behavioral or neural stimulus to the subjects in real time.
Recent efforts from several groups have produced automatic

methods to detect and quantify neuronal activity in calcium im-
aging data. These methods span from unsupervised classic machine
learning techniques (6–16) to deep learning-based supervised al-
gorithms (17, 18). Among the former class of neuron segmentation
algorithms are the popular methods of principal component and
independent component analysis (PCA/ICA) (11), constrained
nonnegative matrix factorization (CNMF) (13), extension of
CNMF to one-photon microscopy (16), and the more recent and
faster version of CNMF, called OnACID (7), which is based on
online dictionary learning. Recently, Giovannucci et al. (19) have
improved the scalability of CNMF and extended OnACID with
new initialization methods and a convolutional neural network
(CNN), referred to as CaImAn Batch and CaImAn Online, re-
spectively. In general, the accuracy of assumptions in these model-
based methods in characterizing the embedded patterns is a critical
factor in the performance of such methods (20). For example,
CNMF models the background as a low-rank matrix, which might

not capture the complex dynamic of the background in one-photon
imaging recordings. To compensate for this background, Zhou et al.
(16) incorporated an autoregressive model for the background
components to process one-photon imaging data.
Deep learning, or neural networks, can serve as an alternative to the

above classic machine learning techniques. CNNs learn hierarchies of
informative features for a specific task from labeled datasets (20).
Modern fully CNNs have become a staple for semantic image seg-
mentation, providing an end-to-end solution for the pixel-to-pixel
classification problem (21). These networks are often more ef-
ficient compared with the traditional CNN-based segmentation
approaches that label each pixel of an image based on the local
intensity values (21).
A few recent approaches have utilized CNNs to segment neurons

from 2D images for subsequent temporal analysis. These methods
treat multiple frames of imaging data as either additional channels
(17) or one image averaged from all frames (the “mean image”)
(18). One example of this class of CNN-based methods is the
method of Apthorpe et al. (17), which applies 2D kernels to indi-
vidual frames and aggregates temporal information with a temporal
max-pooling layer in the higher levels of the network. While the
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performance was not significantly different from a similar net-
work that only processed the mean image, this CNN method
outperformed PCA/ICA. More recently, based on the fully con-
volutional UNet (22), Klibisz et al. (18) developed the UNet2DS
method that segments neurons from the mean image. In general,
these methods are suboptimal for differentiating active from
nonactive neurons due to the loss of temporal dynamics when
summarizing temporally collected images into a mean image.
Similarly, sparsely firing neurons may appear at unidentifiable
contrasts compared with the background after undergoing aver-
aging to the mean image. Finally, 2D segmentation of mean im-
ages has difficulty in delineating the neuron boundaries between
overlapping neurons that independently fire in time (Fig. 1).
Three-dimensional CNN architectures could be superior to 2D

segmentation networks as they have the advantage of incorporating
temporal information into an end-to-end learning process (23).
Compared with methods that process 2D images, spatiotemporal
methods can provide more accurate results in identifying sparsely
spiking and overlapping neurons but are also computationally more
challenging (13). Compared with iterative methods such as CNMF,
a 3D CNN architecture could produce high computational effi-
ciency for long-duration, large-scale recordings. Three-dimensional
CNNs have already been impactful in other video (23, 24) and
volumetric biomedical (25–27) data analyses.
A critical factor prohibiting development and accurate assess-

ment of such novel learning-based techniques (e.g., 3D CNNs) is
the absence of a comprehensive public dataset with accurate gold-
standard ground truth (GT) markings. Indeed, the Allen Brain
Observatory (ABO) (observatory.brain-map.org/visualcoding) and
the Neurofinder challenge (https://github.com/codeneuro/neurofinder)
have provided invaluable online resources in the form of diverse
datasets spanning multiple brain areas. We demonstrate that
existing markings that accompany these datasets contain signif-
icant errors, further complicating algorithm development and
assessment. Like many other medical imaging modalities that
lack empirically driven GT, human expert markings could serve
as the gold standard. In such situations, the agreement between
multiple expert human graders has traditionally determined the
practical upper bound for accuracy. No automated algorithm to
date is shown to be closer in accuracy to the markings of an
expert human grader than another experienced grader.
In this paper we present a CNN-based method with spatiotem-

poral convolutional layers to segment active neurons from two-
photon calcium imaging data. To train and validate the perfor-
mance of this algorithm, we utilize online datasets from the ABO
and Neurofinder challenge. Since we show that the original
manual markings that accompany these datasets are imperfect,
we carefully manually relabel active neurons in these datasets.
We compare the performance of our network with other state-
of-the-art neuron segmentation methods on these datasets. The
results indicate that our trained network is fast, superior to other
methods, and achieves human accuracy. To demonstrate the
generalizability of our method, we show that the network trained
on data recorded at a specific cortical layer from the ABO dataset
can also accurately segment active neurons from other layers and
cortical regions of the mouse brain with different neuron types
and densities. We demonstrate that adding region-specific re-
cordings to the ABO training set significantly improves the
performance of our method. To promote future advancement of
neuron segmentation algorithms, we provide the manual mark-
ings, source code for all developed algorithms, and weights of the
trained networks as an open-source software package (28).

Results
Spatiotemporal Neuron Segmentation Using Deep Learning. The key
feature of our active neuron segmentation framework (Fig. 2A) was a
3D CNN architecture that we named Spatiotemporal NeuroNet
(STNeuroNet) (Fig. 2B and SI Appendix, Fig. S1). The 3D con-

volutional layers in STNeuroNet extracted local spatiotemporal in-
formation that capture the temporal dynamics of the input recording.
STNeuroNet consisted of downsampling, upsampling, convolutional
skip connections, and temporal max-pooling components that pre-
dict neuron masks based on spatiotemporal context of the input
recording. The network generated feature maps at three different
resolutions with a cascade of dense feature stacks and strided
convolutional layers. The network then upsampled and fused the
extracted features to generate the final predictions. After initial
background compensation of individual movie frames, STNeur-
oNet processed sequences of short temporal batches of n =
120 frames and output a 2D probability map of active neurons for
each batch. We then applied an optimal threshold to the neuron
probability maps and automatically separated high-probability
regions into individual neuron instances. Finally, the final set of
unique active neurons for the entire recording was determined by
eliminating duplicate masks of the same neurons that were iden-
tified in different temporal intervals of the video (Methods).

STNeuroNet Accurately Segmented Neurons from the ABO Dataset.
We first quantified the performance of our method using a subset
of the ABO dataset. This dataset included the first 12 min and 51 s
of two-photon microscopy recordings from 275 μm deep in the
primary visual cortex (VISp) of 10 mice expressing the GCaMP6f
calcium sensor. We binned these videos from 30 Hz to 6 Hz to
speed up the processing time without significantly compromising
the neuron identification results (12, 16, 29) and to permit uni-
form comparison across future datasets with similar imaging rates.
The Allen Institute performed automatic neuron segmentation

without manual inspection of the results (30). We inspected the
provided set of masks and found that some of the masks did not
correspond to active neurons in the selected ∼13-min time interval,
and some active neurons were not included in the set (SI Appendix,
Fig. S2). Thus, two expert human graders improved the accuracy by
sequentially editing the labeling and creating the gold-standard GT
labels (Methods and SI Appendix, Table S1). Overall, we removed
n = 40 ± 23.6 masks (mean ± SD over n = 10 videos) from the
initial ABO marking as they were not located on the soma of active
neurons, accounting for 13.9 ± 5.7% of the initial neurons, and
added n = 72.7 ± 20.9 neurons, accounting for 24.2 ± 5.9% of the
final GT neurons. The final set of neurons comprising the GT
demonstrated peak calcium responses with d′ ≥ 4 within the spike
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Fig. 1. Overlapping neurons complicate active neuron segmentation. (A) Neurons
can have overlapping regions in two-photon calcium imaging data due to the
projection of a 3D volume onto a 2D imaging plane, as evident in themean image,
normalized to the maximum intensity of the cropped region. (B) The temporal
evolution of neuron intensities provides important information for accurate seg-
mentation of such cases, which is exploited by the method proposed in this paper.
The time series in green and orange correspond to neurons outlinedwithmatching
colors. Images in the middle panel show the recorded data at the marked time
points, and the images in the left panel are the normalizedmean images of frames
corresponding to each neuron’s active time interval (defined as 0.5 s after the
marked spike times). We separated traces of these overlapping neurons using the
linear regression approach of the Allen Institute (30). (Scale bars, 10 μm.)
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detection formalism (Methods), which were at significantly higher
levels compared with the distribution of d′ values from the baseline
due to noise (P < 0.001, one-sided Z-test using n = 500 baseline
samples for each of the 3,016 GT neurons). To optimally utilize our
labeled dataset yet strictly separate training and testing datasets, we
used leave-one-out cross-validation to assess the performance of
our algorithm for detection and segmentation of active neurons.
Training our network on 144 × 144 × 120 segments of input data

took 11.5 h for 36,000 iterations. After training, STNeuroNet gen-
erated neuron predictions in 171.24 ± 21.28 s (mean ± SD over n =
10 videos) when processing 4,624 ± 5 frames of size 487 × 487 pixels.
The complete framework, from preprocessing to the final neuron
aggregation, processed these recordings with 17.3 ± 1.2 frames per s
(mean ± SD over n = 10 videos) speed. Note that considering the
binning of videos from 30 Hz to 6 Hz, the effective processing rate
can be up to five times better than the reported number.
Fig. 3 shows an illustrative example of our framework applied on

a time interval of n = 1,200 background-compensated frames from
one mouse, which achieved neuron detection scores (recall, preci-
sion, F1) of (0.86, 0.88, 0.87) (Methods). The first frame, last frame,
and the normalized temporal average of all frames in the batch are
shown in Fig. 3B. To better illustrate temporal neuronal activity, we
also show the correlation image, defined as the mean correlation
value between each pixel with its four-connected neighborhood
pixels. Temporal ΔF/F traces (where ΔF is the difference between
the signal peak and baseline amplitudes and F is the mean baseline
amplitude) for selected true positive, false negative, and silent
neurons highlight the presence or absence of activity in the selected
time interval, indicating that STNeuroNet effectively selected active
neurons while disregarding silent neurons (Fig. 3 B and C).
Using the same 10 videos, we compared the performance of our

framework to the performance of CaImAn Online and CaImAn
Batch (19), Suite2p (12), HNCcorr (15), and to the deep learning-
based UNet2DS (18) algorithm, quantifying each algorithm in terms
of recall, precision, and F1 (Fig. 4). To compare all algorithms on an
equal footing, we optimized the algorithmic parameters for each
method through leave-one-out cross-validation (SI Appendix, Sup-
plementary Methods). Since F1 quantifies a balance between recall
and precision, we used this score as the final metric to optimize and

assess the performance of all methods. Our framework out-
performed all other algorithms in the F1 score (P < 0.005, two-sided
Wilcoxon rank sum test over n = 10 videos; Fig. 4A and SI Appendix,
Table S2) at higher speed compared with CaImAn Batch and
HNCcorr (P < 0.005, two-sided Wilcoxon rank sum test over n =
10 videos), while being as fast as CaImAn Online and slower than
Suite2p (P = 0.3075 and < 0.005, respectively; two-sided Wilcoxon
rank sum test over n = 10 videos; Fig. 4B) when processing 487- ×
487-pixel videos. After disregarding the initialization time of
STNeuroNet, our framework was significantly faster than Suite2p
(P = 0.026, two-sided Wilcoxon rank sum test over n = 10 videos).
For CaImAn Online, the initialization time was 10.4 ± 0.8 s for
100 frames and did not contribute significantly to the total processing
time. Because UNet2DS processed a single 2D image, it was ex-
tremely fast (speed = 2,263.3 ± 2.6 frames per s for n = 10 videos),
but it was not able to separate overlapping neurons, resulting in low
recall values compared with other methods (SI Appendix, Fig. S3A).
We further investigated the underlying source for our frame-

work’s superior recall compared with other spatiotemporal
methods. Fig. 4 C and D and SI Appendix, Fig. S3 B–E illustrate
examples of sparsely firing neurons with low ΔF/F value calcium
transients that were identified by STNeuroNet and missed by other
algorithms. We further validated this observation by quantifying
the percentage of GT neurons detected at different levels of peak
signal-to-noise ratio (PSNR) (Methods) in Fig. 4E. STNeuroNet’s
higher percentage of true positive neurons compared with other
algorithms in the low PSNR regime indicates that our network
achieved high recall because it identified a larger portion of spiking
neurons with relatively low PSNR calcium transients. On average,
our algorithm detected 22.4 ± 7.5%, 7.9 ± 3.6%, 21.0 ± 4.8%,
26.1 ± 4.6%, and 38.1 ± 5.9% more neurons (mean ± SD for n =
10 videos) from the GT compared with CaImAn Online, CaImAn
Batch, Suite2p, HNCcorr, and UNet2DS, respectively.
To assess the reproducibility of our GT markings, we trained a

third grader to conduct an interhuman agreement test. Grader
3 labeled these data from scratch without access to the initial masks
from the Allen Institute or the consensus GT segmentations pro-
duced by the first two graders. GT and grader 3 were consistent in
segmenting neurons with high PSNR (SI Appendix, Fig. S4 A and
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Fig. 2. Schematic for the proposed spatiotemporal
deep learning based segmentation of active neurons
in two-photon calcium videos. (A) After removing
background nonuniformity of each video batch (n =
120 frames), STNeuroNet predicts the neuron prob-
ability map. We identify neuron instances in the
binarized probability maps from multiple temporal
batches, which we then fuse into the final set of
active neurons for the entire video. (Right Inset) The
mean image of the region enclosed by the white
box, normalized to its maximum fluorescence value.
(Scale bar, 10 μm.) (B) STNeuroNet architecture de-
tails. The network generates feature maps at three
different resolutions with a cascade of dense feature
stacks and strided convolutional layers. These fea-
tures maps are fused and further processed by the
subsequent convolutional layers. A final bilinear
upsampling layer transforms the feature maps to the
original image resolution. A max-pooling layer
summarizes the features along the time dimension.
Finally, two 2D convolutional layers generate the
segmentation logits. All convolutional layers use the
rectified linear unit activation function. Numbers on
top of the dense feature stacks indicate the number
of convolutional layers involved, and numbers for
the bilinear upsampling blocks indicate the upsam-
pling factor. BN, batch normalization.
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B). The resulting distribution of mismatched cases (set of missed and
falsely labeled neurons) was weighted toward neurons with low PSNR
values, which challenge human perception during manual marking
of the video (SI Appendix, Fig. S4B). Our framework achieved a
higher F1 score compared with grader 3 (mean of 0.84 versus 0.78,
P = 0.0013; two-sided Wilcoxon rank sum test for n = 10 videos; SI
Appendix, Fig. S4C). To mimic the case of semiautomatic marking,
we asked a fourth grader to independently correct the ABO
markings for these videos. Compared with grader 4, both grader
3 and STNeuroNet achieved lower F1 scores (P = 0.0002 and 0.0036,
respectively; two-sided Wilcoxon rank sum test for n = 10 videos; SI
Appendix, Fig. S4C), which is due to the inherent bias between the
GT set and grader 4’s markings (SI Appendix, Table S3).

The Trained STNeuroNet Segmented Neurons from Unseen Recordings
of Additional Cortical Layers. To demonstrate the generalizability of
our trained STNeuroNet, we next applied our segmentation
framework to recordings from a different cortical layer in VISp.
We trained STNeuroNet with the same 10 videos as in the previous

section, from 275 μm below the pia in VISp. The neurons in these
datasets were drawn from the Rorb-IRES2-Cre mouse line,
which restricts expression to layer-4 neurons, and the Cux2-
CreERT2 mouse line, which restricts expression to excitatory cell
types (SI Appendix, Table S4). We then tested this network on data
acquired from 10 different mice, this time from a different cortical
layer at 175 μm deep in VISp. The neurons in these datasets
were drawn from the Cux2-CreERT2 and Emx1-IRES-Cre
mouse lines, which express calcium sensors in excitatory neu-
rons (Methods and SI Appendix, Table S4). The data from 175 μm
deep is putatively in layer 2/3, while the data from 275 μm deep is
at the interface between layer 4 and layer 2/3. Neurons from the
test dataset were qualitatively visually different from neurons in
the training set (Fig. 5A). Quantitatively, the test set had bigger
neurons (median of 112.6 μm2 versus 102.8 μm2; P < 0.005, two-
sided Wilcoxon rank sum test over n = 2,182 and 3,016 neurons,
respectively; Fig. 5B) and lower densities of identified active neu-
rons (0.0014 ± 0.0002 neurons per μm2 versus 0.0019 ±
0.0003 neurons per μm2 for 175 and 275 μm data, respectively; P <
0.005, two-sided Wilcoxon rank sum test over n = 10 videos).
Despite the differences in the size and density of neurons within
these two datasets, our network trained on 275 μm data performed
at indistinguishable levels on 275 μm test data and 175 μm data
(P = 0.1212 for F1; two-sided Wilcoxon rank sum test with n =
10 videos for both groups; Fig. 5C and SI Appendix, Table S2).
Using the layer 275 μm data to set the algorithmic parameters of
other methods, our framework achieved the highest mean F1 score
on the 175 μm data (P < 0.005, two-sided Wilcoxon rank sum test
over n = 10 videos; Fig. 5D and SI Appendix, Table S2). Unlike our
method, the F1 scores of all other methods except UNet2DS were
significantly lower on the 175 μm data compared with the 275 μm
test data (P = 0.006, 0.031, 0.021, and 0.045 for CaImAn Online,
CaImAn Batch, Suite2p, and HNCcorr, respectively; two-sided
Wilcoxon rank sum test over n = 10 videos; SI Appendix, Table S2).

STNeuroNet Accurately Segmented Neurons from Neurofinder Data.
We also applied our framework on two-photon calcium imaging
data from the Neurofinder challenge. These recordings are from
GCaMP6-expressing neurons within different cortical and subcor-
tical regions acquired and labeled by different laboratories. We used
the datasets with activity-informed markings for training and com-
parison between different algorithms (Methods). Upon systematic
inspection of Neurofinder GT sets, we found many putative neurons
(n = 2, 2, 81, 60, 50, and 19 neurons for datasets called 01.00, 01.01,
02.00, 02.01, 04.00, and 04.01, respectively, corresponding to 0.5%,
0.6%, 41.1%, 33.7%, 21.2%, and 7.67% of the original GT neurons)
with spatial shape and fluorescence temporal waveforms expected
from GCaMP6-expressing neurons. Examples of such GT errors
from the data called 04.00 in the Neurofinder training set are shown
in Fig. 6 A and B. The extracted transients in the time series of
newly found neurons among all datasets had high detectability index
d′ > 3.2, emphasizing that these signals are truly activity-evoked
transients. We also computed the average fluorescence image
during these highly detectable transients, which yielded high-quality
images of the neurons (Fig. 6B, Left).
We analyzed the impact of using different training GT sets on

STNeuroNet’s performance. The senior grader (grader 1) cor-
rected the labeling of the training data by adding the missing
neurons to the GT sets and labeled the Neurofinder test set (SI
Appendix, Table S1). Compared with the case of using Neuro-
finder’s GT for training, the average F1 score was not signifi-
cantly different from the case of employing the markings from
grader 1 for both training and testing (P = 0.9372, two-sided
Wilcoxon rank sum test over n = 6 videos; Fig. 6C). Similar to
the ABO dataset, we conducted an interhuman agreement test.
Independent from grader 1, grader 2 created a second set of
markings for the test datasets (SI Appendix, Table S1). When
tested on grader 1’s markings, our algorithm attained an average
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Fig. 3. STNeuroNet accurately identified active neurons from the ABO
dataset. (A) Detection results from 1,200 frames (200 s) of a test video overlaid
on the 200 × 200 pixels (156 μm × 156 μm) cropped region from the correlation
image of the data. The neuron detection metrics (recall, precision, F1) for the
whole-size data are (0.86, 0.88, 0.87). Green outlines, true positives; cyan
outlines, false negatives; red outlines, false positives. (Scale bar, 50 μ;m.) (B)
First and last frames, normalized mean image, and correlation image from the
region enclosed in the white box in A. While many neurons are visible in the
mean image, only active neurons were segmented (green outlines). The neu-
ron marked with magenta is an example silent neuron that STNeuroNet ef-
fectively disregarded. (Scale bar, 50 μm.) (C) Example mean images of true
positive, false negative, and silent neurons (green, cyan, andmagenta outlines,
respectively; Left) and their time series (Right) from B. (Scale bar, 10 μm.)
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F1 score comparable to that of grader 2 (P = 0.2403 and 0.3095 for
training on Neurofinder’s GT and grader 1’s GT, respectively;
two-sided Wilcoxon rank sum test over n = 6 videos; Fig. 6C).
Using our expert manual markings as GT for the Neurofinder

dataset, we compared our framework to other methods (Fig. 6D
and SI Appendix, Table S2). For all algorithms, we used the entire
Neurofinder training set to optimize the algorithmic parameters for
each method (SI Appendix, Supplementary Methods). Our frame-
work (STNeuroNet trained with the entire training set) achieved
higher but statistically insignificant F1 score than Suite2p (mean ±
SD of 0.70 ± 0.03 and 0.61 ± 0.08, respectively; P = 0.0649, two-
sided Wilcoxon rank sum test over n = 6 videos). Compared with
all other methods, STNeuroNet’s F1 score was significantly higher
(P < 0.005, two-sided Wilcoxon rank sum test over n = 6 videos).
To further test the generalizability of our framework to experi-

mentally different data, we compared the performance of STNeur-
oNet trained on the ABO Layer 275 μm dataset to STNeuroNet
trained on all Neurofinder training set, when evaluated on the
Neurofinder test data (SI Appendix, Table S5). Although using the
ABO Layer 275 μm data for training resulted in lower mean F1 score,
the scores were not statistically different (P = 0.485, two-sided

Wilcoxon rank sum test for n = 6 videos), and the performance
was comparable to that of Suite2p (P = 1, two-sided Wilcoxon rank
sum test for n = 6 videos). With the addition of the high-quality ABO
Layer 275 μm data to the Neurofinder training set, STNeuroNet
achieved higher F1 score compared with the network trained only on
the Neurofinder training set (P = 0.026, two-sided Wilcoxon rank
sum test for n = 6 videos; SI Appendix, Table S5).

Discussion
In this paper we presented an automated, fast, and reliable active
neuron segmentation method to overcome a critical bottleneck in
the analysis workflow of utilizing neuronal signals in real-time be-
havioral studies. The core component of our method was an effi-
cient 3D CNN named STNeuroNet. The performance of this core
was further improved by intuitive pre- and postprocessing steps. Our
proposed framework for sequential processing of the entire video
accurately segmented overlapping active neurons. In the ABO
dataset, our method surpassed the performance of CaImAn, Sui-
te2p, HNCcorr, UNet2DS, and an expert grader and generalized to
segmenting active neurons from different cortical layers and regions
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Fig. 4. STNeuroNet outperformed CaImAn, Suite2p, HNCcorr, and UNet2DS on the ABO dataset. (A) STNeuroNet’s neuron identification score was superior
to other methods (*P < 0.05 and **P < 0.005, two-sided Wilcoxon rank sum test, n = 10 videos; n.s., not significant), which was largely due to its superior
recall. (B) Our framework achieved superior detection performance over other methods at practically high processing speed. To facilitate visualization in this
figure, we have excluded the relatively inaccurate yet fast UNet2DS (mean ± SD of F1 = 0.57 ± 0.04 and speed = 2,263.3 ± 2.6 frames per s for n = 10 videos).
Error bars in A and B are SDs for n = 10 videos. (C) Example data comparing the result of STNeuroNet to CaImAn (7), Suite2p (12), HNCcorr (15), and UNet2DS
(18). The segmented neurons are marked with different colors for each algorithm on top of the correlation image, with the yellow markings denoting the GT
neurons. (Scale bar, 50 μm.) (D) Example neurons from C identified by STNeuroNet and missed by other methods along with their time series (black traces) and
aligned activity-evoked signals (gray traces). Images on the left are the normalized mean images over the active intervals of the neurons. Traces are from a
portion of the entire recording, with the times of putative calcium transients labeled with red markers. Red traces are the average of all aligned transients.
(Scale bar, 10 μm.) (E) Percentage of detected GT neurons versus binarized PSNR for all algorithms. The higher values of STNeuroNet’s curve compared with
other algorithms in the low PSNR regime indicate that our network identified a larger portion of neurons with low optical calcium response.
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with different experimental setups. We also achieved the highest mean
F1 score on the diverse datasets from the Neurofinder challenge.
STNeuroNet is an extension of DenseVNet (31), which consists

of 3D convolutional layers, to segment active neurons from two-
photon calcium imaging data. The added temporal max-pooling
layer to the output of DenseVNet summarized the spatiotemporal
features into spatial features. This step greatly increased the speed
of training and inference processes, which is important for high-
speed network validation and low-latency inference in time-
sensitive applications such as closed-loop experiments.
We showed the superior performance of our method for active

neuron detection and segmentation by direct comparison with the
state-of-the-art classic machine learning as well as deep learning
methods. We achieved this level of performance by consistently
detecting larger number of true active neurons compared with other
algorithms. Our superior performance was not dependent on the GT
created by graders 1 and 2 (SI Appendix, Supplementary Experiment).

This is in part due to the fact that unlike the model-based spa-
tiotemporal deconvolution methods of CaImAn and Suite2p, our
proposed STNeuroNet extracts relevant spatiotemporal features
from the imaging data without prior modeling; the deep learning
approach could be more flexible for detecting arbitrary spatio-
temporal features. Compared with the deep learning-based
UNet2DS that is applied to a single aggregate (mean) image,
our proposed framework was more powerful in discriminating
overlapping neurons and identifying neurons with low activity-
evoked contrast because it assesses information in each video
frame individually, and in concert with other frames.
One advantage of deep learning-based methods is that once

trained they are computationally fast at inference time. We showed
that our framework achieved significantly higher detection scores
compared with all other methods at practically high processing
speed. While we measured the computational speed of all algo-
rithms on the same computer, we acknowledge that some of these
algorithms could potentially benefit from more computationally
optimal coding that target other specific hardware architectures.
Combined with signal separation (11, 32, 33) and fast spike de-
tection algorithms (33–35), our framework could potentially enable
fast and accurate assessment of neural activity from two-photon
calcium imaging data. Our current implementation performed
neuron detection at near-video-rate processing of individual frames
when processing sets of sequential frames, which suggests that our
framework can interleave updates of the segmentation results with
data acquisition. Because our framework can be applied to over-
lapping or nonoverlapping temporal batches, it presents a flexible
trade-off to either increase speed or accuracy: Processing non-
overlapping temporal batches speeds up the algorithm, while using
the median or mean probability map of highly overlapping batches
could potentially improve the performance at inference time.
Depending on the complexity of the problem and the architec-

ture of neural networks, deep learning methods need different
amount of training data to achieve high performance scores and to
be generalizable. We utilized data augmentation, dropout (36), and
batch normalization (37) to achieve generalizability and prevent
overfitting. We demonstrated the generalizability of our trained
STNeuroNet by applying the processing framework on recordings
from different cortical layers and regions (SI Appendix, Table S5).
We were able to train STNeuroNet on neurons from 275 μm deep
in the mouse cortex and segment active neurons from 175 μm deep
at an indistinguishable performance level, despite the differences in
the neuron size and densities at these two depths. This experiment
confirmed that our network was not overtrained to segment active
neurons from a specific cortical depth. Adding ABO Layer 275 μm
data to the Neurofinder training dataset improved accuracy of
segmenting the Neurofinder test dataset (SI Appendix, Table S5).
These results suggest that utilizing training data acquired with dif-
ferent experimental setups is beneficial for generalizing STNeur-
oNet. Also, training on the entire ABO dataset and testing on
Neurofinder recordings shows that having more training data from
one experimental setup improves performance of segmenting
videos from a different experimental setup (SI Appendix, Table S5).
These experiments confirm that other neuroscientists with signifi-
cantly different recordings can take advantage of our trained net-
work through transfer learning (38) to adapt the network to their
specific data. Combined with transfer learning, our trained network
has the potential to achieve high performance and generalizability
on experimentally diverse recordings.
In this work, we carefully relabeled active neurons from the ABO

dataset to compare the performance of different algorithms. To
minimize the probability of human error in marking active neurons,
we created the final set of GTmasks by combining the markings from
two independent graders. To assess human grading consistency, we
compared the markings of a third independent grader performing
manual segmentation from scratch to the GT. We showed that our
framework’s performance was higher than grader 3’s, suggesting that
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Fig. 5. Trained STNeuroNet performed equally well on data from a different
cortical layer, outperforming CaImAn, Suite2p, HNCcorr, and UNet2DS. (A)
Qualitative comparison between Layer 275 μm and 175 μm data from the ABO
dataset. Images are the normalized maximum-value projection images over
the entire recording of two sample data. (B) The area of active neurons labeled
from the two cortical depths were different (**P < 0.005; n = 2,182 and
3,016 neurons from the 175 μm and 275 μm datasets, respectively), with the
higher depth exhibiting smaller neurons. (C) The neuron detection scores were
not significantly different for recall and F1 (P = 0.5708 and 0.1212, respectively;
*P < 0.05; n = 10 videos for both groups; n.s., not significant) between the two
datasets using the network trained on the 275 μm data to detect active neu-
rons. (D) STNeuroNet’s performance score on the 175 μm data were superior
compared with other methods (**P < 0.005; over n = 10 videos). All P values
were derived using the two-sided Wilcoxon rank sum test.
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STNeuroNet learned informative features and surpassed human-level
accuracy in active neuron segmentation. For the sake of complete-
ness, we added an additional experiment to reflect the effect of bias in
performance of human graders. We compared our method to grader
4, a grader who corrected the ABO dataset markings with similar
procedures to, but independently of, graders 1 and 2. As expected,
due to the bias created by having access to pilot segmentation labels,
grader 4’s markings were closer to the GT than grader 3’s markings.
Naturally, using manual labeling as the gold standard has the

disadvantage of introducing human errors and bias in the GT data.
However, currently available alternative approaches are even less
suitable for generating GT. For example, simultaneous dual-channel
imaging of activity-independent nuclear-tagged neurons provides
reliable GT markings for all neurons. However, such labels which
include both active and inactive neurons are not suitable for evalu-
ating segmentation methods for active neurons in behavioral ex-
perimentations. Progress in activity-based neuron labeling methods
combined with simultaneous optical and structural imaging tech-
niques may provide reliable gold-standard datasets in future.
In addition to the ABO dataset, we also included the results of

segmenting the diverse Neurofinder challenge datasets. We in-
cluded these results because the Neurofinder dataset has been used
to assess the accuracy of many recent segmentation algorithms (12,
14, 15, 18). Our framework significantly outperformed all other
methods except Suite2p, which could be due to the small sample
size and the relatively large spread of Suite2p’s F1 scores. It is
encouraging that our method achieved the highest mean F1, but
our finding that the GT labeling of the training dataset from the
challenge has missed neurons is nearly as important. While we do
not have access to the labeling of the test dataset, we presume that
GT accuracies in the publicly available training datasets match that
of the test data. Thus, we carefully manually labeled the test set in
the Neurofinder challenge. The availability of these carefully la-
beled GT training and test sets are expected to improve the fair-
ness and accuracy of the evaluation metrics to be used for assessing
future segmentation algorithms. Similar to the ABO dataset, we
achieved above-human-level performance when training on our

carefully labeled markings. Furthermore, when using our carefully
curated test labels to evaluate the performance of STNeuroNet
under different training conditions, we found that training on our
carefully curated training labels only marginally improved perfor-
mance compared with training on Neurofinder’s labels. This might
be due to the nature of the CNN architecture. The architecture
seeks to establish a complex yet consistent pattern in data and
could average out erroneous labeling of a subset of the training set
as outliers. However, errors in labeling of the test set more affect
the performance metrics, as experimentalists use these erroneous
labels to directly evaluate the network’s output. The impact of
training with noisy or incorrect labels on the performance of CNNs
is still the subject of active research (39–41), and an in-depth
analysis of their effect is beyond the scope of this paper.
We also note that regardless of correct labeling, the limited

number of training samples per dataset in the Neurofinder chal-
lenge is a major bottleneck for optimal training of CNN-based
methods. Our method achieved generalizability and human-level
performance and thus could assist in the creation of additional
accurate training sets for future algorithm development. CNN-
generated GT datasets could potentially reduce the workload of
human graders while improving the accuracy of the markings by
minimizing human errors due to subjective heuristics.
This work is the first step in a continuum of research to utilize 3D

CNNs for detection and segmentation of neurons from calcium im-
aging data. The data used in our work were properly corrected for
motion artifacts by the data owners. In the more general case of
nonregistered datasets, algorithms such as NoRMCorre (42) can be
used to accurately correct motion before the application of our
framework. We used watershed to separate the identified overlapping
neurons coactivated in the same time interval processed by STNeur-
oNet, which can give inaccurate masks. Since such overlapping neu-
rons might segregate themselves in other time intervals, we presented
the neuron fusion process to circumvent this issue and obtain masks
that had overlapping pixels. Each component of our method, in-
dividually or together, can be used by us and other researchers in many
related projects. To this end, as our computationally fast and accurate
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with high detection fidelity d′ (reported values are mean ± SD). The images on the left are the normalized average of frames within active time intervals,
defined as 0.5 s after the marked spike times. (Scale bar, 10 μm.) (C) When tested on grader 1’s GT, STNeuroNet’s performance was not significantly different
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the test dataset compared with grader 2, when tested with grader 1’s GT (P = 0.0411 and 0.0087). (D) STNeuroNet statistically outperformed other methods
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rank sum test over n = 6 videos; n.s., not significant.

8560 | www.pnas.org/cgi/doi/10.1073/pnas.1812995116 Soltanian-Zadeh et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
26

, 2
02

1 

https://www.pnas.org/cgi/doi/10.1073/pnas.1812995116


www.manaraa.com

method is an invaluable tool for a large spectrum of real-time opto-
genetic experiments, we have made our open-source software and
carefully annotated datasets freely available online. Future work
should extend the current framework to minimize parameter adjust-
ments in pre- and postprocessing steps by encapsulating these steps
into an end-to-end learning process. Such an approach would remove
the need for watershed-based separation of overlapping neurons,
which is prone to error for one-photon recordings or two-photon
imaging of species or brain areas with significantly overlapping pop-
ulations, which was not present in the data utilized in our work.

Methods
Proposed Active Neuron Segmentation Method. Fig. 2 outlines the proposed
segmentation algorithm, which contains three major components. First is a set of
preprocessing steps to make two-photon microscopy data appropriate for
analysis by CNN. Second is our core 3D CNN architecture, named STNeuroNet,
that generates a probability map of potential masks for active neurons from
these preprocessed data. The third and final stage is a set of postprocessing steps
to infer the location and mask of individual active neurons from the outputs of
STNeuroNet. These steps are discussed in detail in the following sections.

Image Preprocessing Steps. All data used in ourworkwere previously registered.
We first cropped the boundary region of the data to remove black borders in-
troduced in the registration processes (10 μm in each direction for the ABO data
and 4 to 50 μm for the Neurofinder data). To increase SNR, reduce the com-
putational complexity, and allow utilization of the trained network for fu-
ture data with different recording speeds, we temporally binned ABO and
Neurofinder videos to 6-Hz and 3-Hz videos (lowest frame rate among the five
datasets in the Neurofinder challenge), respectively. We performed temporal
binning by combining a set of consecutive frames into one frame via summation.
We then corrected for nonuniform background illumination using homomorphic
filtering (43) on each frame of the video. We formulated a high-pass filter by
subtracting a low-pass Gaussian filter with SD of 0.04 μm−1 from 1. Then, we
normalized the intensity of each video by dividing by its overall SD.

Neural Network Architecture. Much like action recognition from videos, active
neuron segmentation requires capturing context from multiple frames. This
motivated us to utilize 3D convolutional layers in our deep learning network.
Three-dimensional convolutional layers extract local spatiotemporal in-
formation that capture the temporal dynamics of the input recording.We used
the DenseVNet (31), implemented as part of NiftyNet (44), as the backbone for
our STNeuroNet network. Like other popular fully CNNs for semantic seg-
mentation of medical images [e.g., UNet (22) and VNet (27)], DenseVNet is
composed of downsampling (or encoder), upsampling, and skip connection
components (Fig. 2B and SI Appendix, Fig. S1). Unlike the two previous net-
works, each encoder stage of DenseVNet is a dense feature stack. The input to
each convolutional layer of the stack is the concatenated outputs from all
preceding layers of the stack. This structure has the main advantage of im-
proved performance with substantially fewer parameters through gradient
propagation and feature reuse (31, 45). In the encoder path, strided con-
volutional layers reduce the dimensionality of the input feature map and
connect dense feature stacks. Single convolutional layers in the skip connec-
tions, followed by bilinear upsampling, transform the output feature maps
from each stage of the encoder path to the original image size (31). All con-
volutional layers in DenseVNet perform 3D convolutions, use the rectified
linear unit nonlinearity as the activation function, and consist of batch nor-
malization (37) and dropout (36) with probability of 0.5 (except the last layer).
Unlike the original implementation of the network, we did not use spatial
priors, dilated convolutions, and batchwise spatial dropout, as these did not
have a significant effect on the final results reported in the original paper (31).

Wemade the following twomodifications toDenseVNet for our application: (i)
we changed the last convolutional layer of DenseVNet to have 10 output chan-
nels instead of the number of classes and (ii) we added a temporal max-pooling
layer to the upsampled features, followed by a 2D convolutional layer with 10 3 ×
3 kernels, and a final convolutional layer with two 3 × 3 kernels to the output of
DenseVNet. The temporal max-pooling layer summarizes the extracted temporal
feature maps, greatly increasing the speed of the training process and reducing
inference time by reducing the number of output predictions (2D predictions
instead of 3D predictions). This step is important for high-speed network valida-
tion and low-latency inference. The last convolutional layer computes two feature
maps for the background and neuron classes. We applied Softmax to each pixel
of the final feature maps to transform them into probability maps. We used the
Dice-loss objective function (27) during training, defined as

Dice-loss= 1−
2
PN

i= 1piqiPN
i =1p

2
i +

PN
i =1q

2
i

, [1]

where the summation is over N, the total number of pixels, and pi and qi are
the Softmax output and GT label for pixel i, respectively. The Dice-loss is
suitable for binary segmentation problems and handles highly unbalanced
classes without the need for sample reweighting (27).

Training Procedure and Data Augmentation. To create a large set of training
samples,we cropped smallerwindowsof size 144×144×120voxels from the rotated
(0°, 90°, and 180°) training videos and GTmarkings and applied random flips during
training. We performed cropping using a spatiotemporal sliding window process
with 75% overlap between adjacent windows. Within this large set of samples, we
kept samples that contained at least one active neuron in the selected 120 frames
time interval. We trained the networks using sample-level whitening, defined as

I−meanðIÞ
stdðIÞ , [2]

where I is the 3D input sample to the network. We used the Adam optimizer
(46) with learning rate of 0.0005 and minibatch size 3. We trained the ABO
and Neurofinder networks for at least 35,000 iterations, or until the loss
function converged (maximum 40,000 iterations).

Postprocessing Steps.
Binarizing neuron probability maps. We used the entire spatial extent of video
frames at test time to estimate the neuron probability maps, which we
processed to isolate individual neurons. We processed video frames in
nonoverlapping batches of n = 120 frames, equal to the number of frames
used during training. We binarized the probability maps by applying the
optimal threshold that yielded the highest mean F1 score on the training set
(SI Appendix, Fig. S5). We then separated potential overlapping active
neurons from each binarized map and removed small regions. Finally, we
aggregated all identified active neuron masks from different time intervals
to obtain the segmentation masks for the entire recording. These steps are
described in detail in the following subsections.
Instance segmentation. The temporal max-pooling layer in our network merges
overlapping active neurons in the segmentation mask. To separate these
neurons, we used the watershed algorithm (47). We first calculated the
distance transform image as the distance of each pixel to the nearest
background pixel. We then applied the MATLAB (MathWorks) watershed
function to the distance transform of connected components which had an
area greater than a predefined threshold, empirically set to the average
neuron area (107.5 μm2 for ABO and 100 to 200 μm2 for Neurofinder). After
separating neuron instances, we discarded small segmented regions as
background, with the minimum area determined to maximize the mean F1
score across the training set (SI Appendix, Fig. S5). Since the watershed al-
gorithm alone cannot accurately determine neuron boundaries for over-
lapping cases, we used segmentation results from multiple temporal batches
to yield the final neuron masks. This step is detailed in the following section.
Neuron fusion. Since STNeuroNet outputs a single 2D probability map of active
neurons for the input time interval, we processed two-photon video recordings in
subsequent short temporal intervals to better resolve overlapping neurons. Unlike
the approach of ref. 17, which used the network predictions to find neuron lo-
cations, we used STNeuroNet’s predictions to determine the final neuron masks.
In each of these time intervals, we identified and segmented active neurons.
Because neurons may activate independently and spike in different times, we
aggregated the segmentation results from all time intervals to attain the seg-
mentation for the entire recording. Aggregation of neuron masks from multiple
inferences corresponding to different time intervals was done in two steps. First,
we matched neurons between these segmentations to identify if the same neu-
ron was segmented multiple times and kept the mask with the mean size. We
used the distance between the masks’ center of mass for this step. Masks with
distance smaller than 4 μm were identified as the same neuron. Second, we re-
moved any mask that encompassed one or more neurons from other time in-
tervals. We removed any mask mi that overlapped with mask mj such that

Normalized Overlap
�
mi ,mj

�
=
jmi∩ mj j
jmj j > θp, [3]

where θp is the overlap threshold, which we empirically set to 0.75.

ABO Dataset and Labeling. This dataset consists of two-photon recordings from
neurons across different layers and areas of mouse visual cortex. Transgenic Cre-
line mice drove expression of the genetically encoded calcium indicator GCaMP6f.
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SI Appendix, Table S4 shows the correspondence between the mouse lines and
videos used in this paper. We used recordings at 275 μm deep in the cortex of
10mice for comparison between algorithms and recordings at 175 μmdeep in the
cortex from a set of 10 different mice to assess the generalizability of all method.

The data were previously corrected for motion and had an accompanying set
of automatically identified neurons (30). We used these automatically detected
neurons as initializations for our manual labeling. We developed a custom
software with graphical user interface (GUI) inMATLAB 2017b (MathWorks) that
allowed our graders to add to the initial set by drawing along the boundary of
newly found neurons (phase 1) and to dismiss wrongly segmented neurons that
do not correspond to the soma of an active neuron (phase 2). In phase 1, the GUI
provided simultaneous visualization of the video overlaid with segmented
neurons’ masks on two separate panels. On one panel, background-corrected
video and in the other panel a summary image of choice (mean, max-projected,
or correlation image, defined as the mean correlation value between each
pixel with its four-connected neighborhood pixels) were displayed. In phase 2,
the GUI showed the zoomed-in region of the video for each segmented
neuron in three panels, which included the background-corrected video, the
mean image, and the ΔF=F trace of the average pixel intensities within the
neuron’s mask. Graders used the following criteria to label each marked mask
as neuron: (i) The marked area had a bright ring with a dark center that
changed brightness during the recording or (ii) the area was circular and had a
size expected from a neuron (10 to 20 μm in diameter) that changed bright-
ness during the recording. Criterion 1 filters for nuclear-exported protein
calcium sensors used by the ABO investigators, while criterion 2 filters for
spatiotemporal features of neuron somas that have calcium activity transients.

Two graders independently corrected the markings of the ABO dataset.
Matching marks from the two graders were labeled as true neurons, whereas
disagreements were reevaluated by the senior grader (grader 1). This grader, blind
to the identity of the nonmatching masks (meaning who marked it), used the
phase 2 of ourGUI to assess all disagreements and label themasks as neuronor not
a neuron. The set of masks marked by both graders and the set of masks that
corresponded to active neurons from the disagreement set comprised the final GT
masks. We created spatiotemporal neuron labels for training by extracting the
neurons’ active time intervals. We first separated traces of overlapping neurons
using the linear regression approach of ref. 30. Using the extracted time series for
each neuron, we removed neuropil signal, scaled by factor of 0.7 (1), and removed
any remaining background fluctuation using a 60-s moving-median filter. For
each neuron mask, we defined the neuropil signal as the average fluorescence
value in an annulus of 5 μmaround the neuron mask, from which we excluded
pixels that belonged to other neurons. We found activity-evoked calcium tran-
sients with high detection fidelity using tools from statistical detection theory
(Spike Detection and Discriminability Index). We considered neurons as active
until 0.5 s after the detected spike times, equal to 3.5 times the half-decay time of
spike-evoked GCaMP6f fluorescence signals reported in ref. 1.

Neurofinder Dataset and Labeling. The Neurofinder challenge consists of
19 training and 9 testing two-photon calcium imaging datasets acquired and
annotated by four different laboratories. These datasets are diverse: They
reportedactivity fromdifferent cortical and subcortical brain regions and varied
in imaging conditions such as excitation power and frame rate. The GT labels
were available for the training sets, while they were held out for the test set.

The firstdataset (calledthe00 set) segmentedneuronsusingfluorescently labeled
anatomical markers, while others were either manually marked or curated with a
semiautomaticmethod.Upon inspectionof the fourthdataset (called the03 set),we
found that this dataset was labeled based on anatomical factors. We excluded the
first and fourth sets from the comparison in Results because these datasets would
include silent neurons; the activity-independent marking is incompatible for
assessing active neuron segmentationmethods. The remaining datasets referred to
as 01, 02, and 04 each had two training videos. Similar to ABO, we created spa-
tiotemporal labels for the Neurofinder training set by detecting neuronal spikes
that satisfied theminimum required d′ (Spike Detection and Discriminability Index),
which we iteratively reduced down to d′ = 0.5 if a spike was not identified.

Spike Detection and Discriminability Index. Using tools from statistical detection
theory (48, 49), we detected prominent spike-evoked fluorescence signals and
quantified their detection fidelity. Specifically, we performed a matched filter ap-
proach with an exponentially decaying signal as the template (S), with mean decay
time of τ, on the ΔF/F traces to reduce the effect of noise on spike detection (49):

L= F0
Xn
i=1

�
−Si +

�
1+ ðΔF=FÞi

�
lnð1+ SiÞ

��
, [4]

in which the summation is over a sliding window of length n, and F0 is the

baseline photon rate. Using the relationship between the mean decay time τ

and half-decay time τ1/2 as

τ=
τ1=2
lnð2Þ, [5]

we used 0.8 s and 0.2 s as the value of τ for GCaMP6s and GCaMP6f data in S,
respectively. We detected spikes as local-maxima time points in a 1-s window
of the filtered signal (L) that passed a predefined threshold of γ:

γ = μ+ σΦ−1ðPNÞ, [6]

which was determined by the tolerable probability of false-negative (PN) and
the mean (μ) and SD (σ) of the distribution of L under the hypothesis of a

spike having occurred (49). In the above equation, Φ−1ð. Þ is the inverse of the
standard Gaussian cumulative distribution function (49).

We further narrowed down the true spikes using the discriminability in-
dex, d’, which characterizes the detection fidelity by considering the am-
plitude and temporal dynamics of the fluorescence signals (49). Higher
values of d’ provide higher spike detection probabilities and lower errors,
with d’ ≥ 3 achieving area under the receiver operating characteristic curve
(a metric for spike detectability) greater than 0.98 (49). We determined the

minimum required detectability index ðd’
minÞ for labeling spikes with the aim of

balancing the number of false-positive ðPFÞ and false-negative ðPNÞ errors (48):

ðfs − λÞPF = λPN , [7]

d’
min =Φ−1ð1− PNÞ−Φ−1ðPFÞ=Φ−1ð1− PNÞ−Φ−1

�
PNλðfs − λÞ−1

�
. [8]

In Eq. 7, fs and λ denote the recording and neuron spike rates, respectively. For
the ABO dataset, since the majority of mice were stationary during the visual
stimulus behavior (SI Appendix, Fig. S6), we selected λ = 2.9 spikes per s in
accordance to previous experimentally obtained spike rates during similar
behaviors (50). We then set a low PN = 0.035, which corresponded to a spike
detection threshold of d′ = 3.6 based on Eqs. 7 and 8. For the Neurofinder
challenge, we used a lower threshold of d′ = 1.7 to compensate for the overall
lower SNR of the data compared with the ABO dataset.

Quantification of PSNR. To calculate the PSNR of neurons, we first separated
traces of overlapping neurons using the linear regression approach of ref. 30.
We then removed neuropil signal, scaled by factor of 0.7 (1), and removed
any remaining background fluctuation using a 60-s moving-median filter.
We then calculated the PSNR for neural traces as

PSNR=
ΔFpeak
σn

, [9]

where ΔFpeak is the difference between the biggest spike value and the
baseline value, and σn is the noise SD calculated from nonactive intervals
of traces.

Evaluation Metrics. We evaluated segmentation methods by comparing their
results with the manual GT labels. We assessed each algorithm by quantifying
three neuron detection metrics: recall, precision, and F1 score, defined as follows:

Recall=
NTP

NGT
, [10]

Precision=
NTP

Ndetected
, [11]

F1= 2
Recall× Precision
Recall+ Precision

. [12]

These quantities derive from the number of manually labeled neurons (GT
neurons, NGT), number of detected neurons by the method (Ndetected), and
number of true positive neurons (NTP). We used the Intersection-over-Union
(IoU) metric along with the Hungarian algorithm to match masks between
the GT labels and the detected masks (19). The IoU for two binary masks, m1

and m2, is defined as

IoUðm1,m2Þ= jm1∩ m2j
jm1∪ m2j. [13]

We calculated the distance between any pair of masks from the GT (mi
GT) and

the detected set (Mj) as described by ref. 19:
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Dist
�
mGT

i ,Mj
�
=

8<
:

1− IoU
�
mGT

i ,Mj
�
, IoU

�
mGT

i ,Mj
�
≥ 0.5

0, mGT
i ⊆Mj orMj ⊆mGT

i
∞, otherwise.

[14]

In the above equation, a distance of infinity denotes masks that are not
matching due to their small IoU score. Next, we applied the Hungarian al-
gorithm to solve the matching problem using the distance matrix defined in
Eq. 14, yielding the set of true positive masks.

Speed Analysis. For each algorithm, we calculated the speed by dividing the
number of frames by the processing time (excluding read and write times). For
CaImAnBatch,we used all of the logical Cores of our central processing unit (CPU)
(28 threads) for parallel processing. For STNeuroNet and CaImAn online, we
calculated an initialization-independent speed by disregarding the algorithms’
initialization times, which were the prefetching of the first batch and the ini-
tialization of the components, respectively.

Hardware Used.WeranCaImAn, Suite2p,HNCcorr, and thepre- andpostprocessing
part of our algorithm on a Windows 10 computer with Intel Xeon E5-2680 v4 CPU
and 256 GB RAM. We trained and tested STNeuroNet and UNet2DS using a single
NVIDIAGeForce GTX Titan X graphics processing unit (GPU). All CNNs in the CaImAn
package were deployed on the NVIDIA GeForce GTX Titan X GPU.

Quantification and Statistical Analysis. Statistical parameters including the defi-
nitions and exact values of n (number of frames, number of videos, or number of
neurons), location, and deviation measures are reported in the figure legends and
corresponding sections in the main text. All data were expressed as mean ± SD. We
used two-sided Z-test for the statistical analysis of calcium transients’ d′ compared
with the distribution of d′ values from the baseline due to noise. For all other sta-
tistical tests, we performed two-sided Wilcoxon rank sum test; n.s., not significant;
*P< 0.05; and **P< 0.005.We determined results to be statistically significantwhen
P < 0.05. We did not remove any data from statistical analyses as outliers.

Data and Software Availability. Codes for STNeuroNet and all other steps in
our algorithm, along with the trained network weights and manual markings,
are available online in our GitHub repository (28).
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